Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.684
Filtrar
1.
Front Immunol ; 15: 1268652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558822

RESUMO

Introduction: A multitude of findings from cell cultures and animal studies are available to support the anti-cancer properties of cannabidiol (CBD). Since CBD acts on multiple molecular targets, its clinical adaptation, especially in combination with cancer immunotherapy regimen remains a serious concern. Methods: Considering this, we extensively studied the effect of CBD on the cytokine-induced killer (CIK) cell immunotherapy approach using multiple non-small cell lung cancer (NSCLC) cells harboring diverse genotypes. Results: Our analysis showed that, a) The Transient Receptor Potential Cation Channel Subfamily V Member 2 (TRPV2) channel was intracellularly expressed both in NSCLC cells and CIK cells. b) A synergistic effect of CIK combined with CBD, resulted in a significant increase in tumor lysis and Interferon gamma (IFN-g) production. c) CBD had a preference to elevate the CD25+CD69+ population and the CD62L_CD45RA+terminal effector memory (EMRA) population in NKT-CIK cells, suggesting early-stage activation and effector memory differentiation in CD3+CD56+ CIK cells. Of interest, we observed that CBD enhanced the calcium influx, which was mediated by the TRPV2 channel and elevated phosphor-Extracellular signal-Regulated Kinase (p-ERK) expression directly in CIK cells, whereas ERK selective inhibitor FR180204 inhibited the increasing cytotoxic CIK ability induced by CBD. Further examinations revealed that CBD induced DNA double-strand breaks via upregulation of histone H2AX phosphorylation in NSCLC cells and the migration and invasion ability of NSCLC cells suppressed by CBD were rescued using the TRPV2 antagonist (Tranilast) in the absence of CIK cells. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. Conclusions: Taken together, CBD holds a great potential for treating NSCLC with CIK cell immunotherapy. In addition, we utilized NSCLC with different driver mutations to investigate the efficacy of CBD. Our findings might provide evidence for CBD-personized treatment with NSCLC patients.


Assuntos
Canabidiol , Carcinoma Pulmonar de Células não Pequenas , Células Matadoras Induzidas por Citocinas , Neoplasias Pulmonares , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Canabidiol/farmacologia , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogênicas p21(ras) , RNA Mensageiro
2.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588037

RESUMO

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Assuntos
Canabidiol , Cocaína , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/metabolismo , Glucose/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/metabolismo , Cocaína/farmacologia , Camundongos Endogâmicos C57BL
3.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38590254

RESUMO

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Assuntos
Doença de Alzheimer , Canabidiol , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Eixo Encéfalo-Intestino , Cognição , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças
4.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602576

RESUMO

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Assuntos
Canabidiol , Animais , Camundongos , RNA Interferente Pequeno/genética , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Anti-Inflamatórios , Modelos Animais de Doenças , Paclitaxel/toxicidade , Receptores de Canabinoides/genética
5.
J Int Soc Sports Nutr ; 21(1): 2337252, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572744

RESUMO

BACKGROUND: Rapid regeneration after intense exercise is essential for competitive athletes. Based on this assumption, supplementation strategies, focusing on food supplements, are increasing to improve the recovery processes. One such supplement is cannabidiol (CBD) which is gaining more attention in competitive sports. However, the evidence is still lacking and there are no data available about the effect of a short-term chronic application. METHODS: A three-arm double-blind cross-over study was conducted to determine the effects of two different CBD products on performance, muscle damage and inflammatory processes in well-trained athletes. In total 17 subjects took successfully part in this study. Each subject underwent the six-day, high-intensity training protocol three times. After each training session, each subject took either a placebo or a CBD product (60 mg of oil or solubilisate). Between the intervention phases, at least four weeks of washout period was conducted. Before and after the training protocols the performance capacity in countermovement jump (CMJ), back squat (BS), bench press (BP) and 1-mile run were measured and biomarkers for muscle damage (creatine kinase, myoglobin), inflammatory processes (interleukin 6 and 10) and immune cell activity (ratios of neutrophil granulocytes, lymphocytes and, platelets) were analyzed. For statistical analyses, the current version of R and a linear mixed model was used. RESULTS: It could identify different effects of the training protocol depending on performance level (advanced or highly advanced athletes) (p < .05). Regardless of the performance level, muscle damage and a reduction in performance could be induced by the training protocol. Only CBD oil was associated with a reduction in myoglobin concentration (p < .05) in advanced athletes. Concerning immune activity, a significant decrease in platelets lymphocyte ratios was observed in advanced athletes after placebo treatment (p < .05). CBD oil application showed a slight inhibitory effect (p < .10). Moreover, the reduction in performance differs between the performance levels. A significant decrease in CMJ was observed in advanced athletes and a decreasing trend in BS was observed in highly advanced athletes after placebo treatment (p < 0.10). Both CBD products do not affect performance parameters. For inflammatory parameters, no effects were observed. CONCLUSION: It was found that the performance level of the subjects was a decisive factor and that they responded differently to the training protocol and the CBD application. However, no clear effects of either CBD product were found and further research is needed to identify the long-term effects of CBD application.


Assuntos
Canabidiol , Esportes , Humanos , Estudos Cross-Over , Canabidiol/farmacologia , Mioglobina , Músculo Esquelético , Atletas , Método Duplo-Cego , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611847

RESUMO

Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.


Assuntos
Canabidiol , Canabinoides , Cannabis , Células-Tronco Mesenquimais , Extratos Vegetais , Humanos , Canabinoides/farmacologia , Canabidiol/farmacologia , PPAR gama , Endocanabinoides , Tecido Adiposo Marrom , RNA Mensageiro
7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612415

RESUMO

The endogenous cannabinoid system (ECS) plays a critical role in the regulation of various physiological functions, including sleep, mood, and neuroinflammation. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinomimimetics, and some N-acylethanolamides, particularly palmitoyethanolamide, have emerged as potential therapeutic agents for the management of sleep disorders. THC, the psychoactive component of cannabis, may initially promote sleep, but, in the long term, alters sleep architecture, while CBD shows promise in improving sleep quality without psychoactive effects. Clinical studies suggest that CBD modulates endocannabinoid signaling through several receptor sites, offering a multifaceted approach to sleep regulation. Similarly, palmitoylethanolamide (PEA), in addition to interacting with the endocannabinoid system, acts as an agonist on peroxisome proliferator-activated receptors (PPARs). The favorable safety profile of CBD and PEA and the potential for long-term use make them an attractive alternative to conventional pharmacotherapy. The integration of the latter two compounds into comprehensive treatment strategies, together with cognitive-behavioral therapy for insomnia (CBT-I), represents a holistic approach to address the multifactorial nature of sleep disorders. Further research is needed to establish the optimal dosage, safety, and efficacy in different patient populations, but the therapeutic potential of CBD and PEA offers hope for improved sleep quality and general well-being.


Assuntos
Canabidiol , Canabinoides , Transtornos do Sono-Vigília , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Endocanabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Sono
8.
Front Immunol ; 15: 1373435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601151

RESUMO

Introduction: The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods: We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results: The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions: These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.


Assuntos
Canabidiol , Canabinoides , Psoríase , Humanos , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Leucócitos Mononucleares , Psoríase/tratamento farmacológico , Endocanabinoides
9.
J Gen Physiol ; 156(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652080

RESUMO

Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to ß-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.


Assuntos
Canabidiol , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas Musculares , Canabidiol/farmacologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos
10.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587319

RESUMO

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Assuntos
Canabidiol , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Dopamina/farmacologia , Apelina/metabolismo , Apelina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia , Hipocampo/metabolismo , Expressão Gênica
11.
Pol J Vet Sci ; 27(1): 35-42, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511589

RESUMO

Antiseptic agents used in the postoperative period affect the functions of many tissues in the body, including the testicles. In this study, the effect of dressings administered with different antiseptic agents on testicular functions in rats that underwent abdominal incisions was investigated. A total of 48 Sprague-Dawley rats were used in the study. Each of the rats in the study group underwent a 4 cm-long skin and muscle operation. The incision was then stitched immediately. Antiseptics, hemp seed oil, hemp leaf oil, and cannabidiol oil were then administered to the rats for 10 days to provide antisepsis. The rats were sacrificed 24 hours after the last administration, and testicular tissues were removed. Testicular tissues were used for histopathological examination and biochemical analysis, while epididymal tissue was used for sperm analysis. According to the results, the MDA level in the antiseptic-administered group was higher than in the other experimental groups (p<0.05). Levels of SOD, CAT activities, and GSH content were found to be lower in the antiseptic group than in the hemp seed oil, hemp leaf oil, and cannabidiol oil groups (p<0.05). In testicular histology, the SEED group had the highest Johnsen score, and the antiseptic group had the lowest score (p<0.05). While JAK, P-JAK2, STAT3, PSTAT3, and NF-κB were generally higher in the antiseptic group compared to the other groups, they were lower in the SEED group. Additionally, sperm total motility rate and epididymal sperm density were highest in the SEED group (p<0.05). As a result, it was determined that cannabidiol seed oil had a good effect on testicular histology and sperm quality in male rats during the wound healing process.


Assuntos
Anti-Infecciosos Locais , Canabidiol , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Canabidiol/farmacologia , Sêmen/metabolismo , Testículo , Espermatozoides , Motilidade dos Espermatozoides , Anti-Infecciosos Locais/farmacologia , Bandagens , Estresse Oxidativo
12.
Emerg Microbes Infect ; 13(1): 2327368, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38531008

RESUMO

The COVID-19 pandemic presents a major threat to global public health. Several lines of evidence have shown that the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), along with two other highly pathogenic coronaviruses, SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV) originated from bats. To prevent and control future coronavirus outbreaks, it is necessary to investigate the interspecies infection and pathogenicity risks of animal-related coronaviruses. Currently used infection models, including in vitro cell lines and in vivo animal models, fail to fully mimic the primary infection in human tissues. Here, we employed organoid technology as a promising new model for studying emerging pathogens and their pathogenic mechanisms. We investigated the key host-virus interaction patterns of five human coronaviruses (SARS-CoV-2 original strain, Omicron BA.1, MERS-CoV, HCoV-229E, and HCoV-OC43) in different human respiratory organoids. Five indicators, including cell tropism, invasion preference, replication activity, host response and virus-induced cell death, were developed to establish a comprehensive evaluation system to predict coronavirus interspecies infection and pathogenicity risks. Using this system, we further examined the pathogenicity and interspecies infection risks of three SARS-related coronaviruses (SARSr-CoV), including WIV1 and rRsSHC014S from bats, and MpCoV-GX from pangolins. Moreover, we found that cannabidiol, a non-psychoactive plant extract, exhibits significant inhibitory effects on various coronaviruses in human lung organoid. Cannabidiol significantly enhanced interferon-stimulated gene expression but reduced levels of inflammatory cytokines. In summary, our study established a reliable comprehensive evaluation system to analyse infection and pathogenicity patterns of zoonotic coronaviruses, which could aid in prevention and control of potentially emerging coronavirus diseases.


Assuntos
COVID-19 , Canabidiol , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Pandemias , Canabidiol/farmacologia , SARS-CoV-2
13.
BMJ Open ; 14(3): e082927, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531572

RESUMO

INTRODUCTION: The non-intoxicating plant-derived cannabinoid, cannabidiol (CBD), has demonstrated therapeutic potential in a number of clinical conditions. Most successful clinical trials have used relatively high (≥300 mg) oral doses of CBD. Relatively few studies have investigated the efficacy of lower (<300 mg) oral doses, typical of those available in over-the-counter CBD products. METHODS: We present a protocol for a randomised, double-blind, placebo-controlled, parallel-group clinical trial investigating the effects of a low oral dose (150 mg) of CBD on acute psychosocial stress, situational anxiety, motion sickness and cybersickness in healthy individuals. Participants (n=74) will receive 150 mg of CBD or a matched placebo 90 min before completing three virtual reality (VR) challenges (tasks) designed to induce transient stress and motion sickness: (a) a 15 min 'Public Speaking' task; (b) a 5 min 'Walk the Plank' task (above a sheer drop); and (c) a 5 min 'Rollercoaster Ride' task. The primary outcomes will be self-reported stress and nausea measured on 100 mm Visual Analogue Scales. Secondary outcomes will include salivary cortisol concentrations, skin conductance, heart rate and vomiting episodes (if any). Statistical analyses will test the hypothesis that CBD reduces nausea and attenuates subjective, endocrine and physiological responses to stress compared with placebo. This study will indicate whether low-dose oral CBD has positive effects in reducing acute psychosocial stress, situational anxiety, motion sickness and cybersickness. ETHICS AND DISSEMINATION: The University of Sydney Human Research Ethics Committee has granted approval (2023/307, version 1.6, 16 February 2024). Study findings will be disseminated in a peer-reviewed journal and at academic conferences. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN12623000872639).


Assuntos
Canabidiol , Enjoo devido ao Movimento , Humanos , Canabidiol/uso terapêutico , Austrália , Ansiedade/tratamento farmacológico , Náusea/tratamento farmacológico , Método Duplo-Cego , Enjoo devido ao Movimento/tratamento farmacológico , Estresse Psicológico , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534310

RESUMO

Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor's role in CBD's mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD's mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD's effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD's effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD's mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants.


Assuntos
Canabidiol , Canabinoides , Neocórtex , Camundongos , Animais , Canabidiol/farmacologia , Anticonvulsivantes/uso terapêutico , Dronabinol , Receptor 5-HT1A de Serotonina , Canabinoides/uso terapêutico , Serotonina
15.
Cells ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534330

RESUMO

Trophoblast differentiation is a crucial process in the formation of the placenta where cytotrophoblasts (CTs) differentiate and fuse to form the syncytiotrophoblast (ST). The bioactive components of cannabis, such as Δ9-THC, are known to disrupt trophoblast differentiation and fusion, as well as mitochondrial dynamics and respiration. However, less is known about the impact of cannabidiol (CBD) on trophoblast differentiation. Due to the central role of mitochondria in stem cell differentiation, we evaluated the impact of CBD on trophoblast mitochondrial function and differentiation. Using BeWo b30 cells, we observed decreased levels of mRNA for markers of syncytialization (GCM1, ERVW1, hCG) following 20 µM CBD treatment during differentiation. In CTs, CBD elevated transcript levels for the mitochondrial and cellular stress markers HSP60 and HSP70, respectively. Furthermore, CBD treatment also increased the lipid peroxidation and oxidative damage marker 4-hydroxynonenal. Mitochondrial membrane potential, basal respiration and ATP production were diminished with the 20 µM CBD treatment in both sub-lineages. mRNA levels for endocannabinoid system (ECS) components (FAAH, NAPEPLD, TRPV1, CB1, CB2, PPARγ) were altered differentially by CBD in CTs and STs. Overall, we demonstrate that CBD impairs trophoblast differentiation and fusion, as well as mitochondrial bioenergetics and redox homeostasis.


Assuntos
Canabidiol , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Diferenciação Celular , Mitocôndrias , RNA Mensageiro/metabolismo
16.
Epilepsia Open ; 9(2): 689-703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427284

RESUMO

OBJECTIVES: Stiripentol, fenfluramine, and cannabidiol are licensed add-on therapies to treat seizures in Dravet Syndrome (DS). There are no direct or indirect comparisons assessing their full licensed dose regimens, across different jurisdictions, as first-line add-on therapies in DS. METHODS: We conducted a systematic review and frequentist network meta-analysis (NMA) of randomized controlled trial (RCT) data for licensed add-on DS therapies. We compared the proportions of patients experiencing: reductions from baseline in monthly convulsive seizure frequency (MCSF) of ≥50% (clinically meaningful), ≥75% (profound), and 100% (seizure-free); serious adverse events (SAEs); discontinuations due to AEs. RESULTS: We identified relevant data from two placebo-controlled RCTs for each drug. Stiripentol 50 mg/kg/day and fenfluramine 0.7 mg/kg/day had similar efficacy in achieving ≥50% (clinically meaningful) and ≥75% (profound) reductions from baseline in MCSF (absolute risk difference [RD] for stiripentol versus fenfluramine 1% [95% confidence interval: -20% to 22%; p = 0.93] and 6% [-15% to 27%; p = 0.59], respectively), and both were statistically superior (p < 0.05) to licensed dose regimens of cannabidiol (10 or 20 mg/kg/day, with/irrespective of clobazam) for these outcomes. Stiripentol was statistically superior in achieving seizure-free intervals compared to fenfluramine (RD = 26% [CI: 8% to 44%; p < 0.01]) and licensed dose regimens of cannabidiol. There were no significant differences in the proportions of patients experiencing SAEs. The risk of discontinuations due to AEs was lower for stiripentol, although the stiripentol trials were shorter. SIGNIFICANCE: This NMA of RCT data indicates stiripentol, as a first-line add-on therapy in DS, is at least as effective as fenfluramine and both are more effective than cannabidiol in reducing convulsive seizures. No significant difference in the incidence of SAEs between the three add-on agents was observed, but stiripentol may have a lower risk of discontinuations due to AEs. These results may inform clinical decision-making and the continued development of guidelines for the treatment of people with DS. PLAIN LANGUAGE SUMMARY: This study compared three drugs (stiripentol, fenfluramine, and cannabidiol) used alongside other medications for managing seizures in a severe type of epilepsy called DS. The study found that stiripentol and fenfluramine were similarly effective in reducing seizures and both were more effective than cannabidiol. Stiripentol was the best drug for stopping seizures completely based on the available clinical trial data. All three drugs had similar rates of serious side effects, but stiripentol had a lower chance of being stopped due to side effects. This information can help guide treatment choices for people with DS.


Assuntos
Canabidiol , Dioxolanos , Epilepsias Mioclônicas , Humanos , Canabidiol/uso terapêutico , Anticonvulsivantes/uso terapêutico , Fenfluramina/uso terapêutico , Metanálise em Rede , Convulsões/tratamento farmacológico , Convulsões/etiologia , Epilepsias Mioclônicas/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
J Inorg Biochem ; 254: 112515, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490045

RESUMO

Chemotherapy resistance is an insurmountable problem in clinical anticancer therapy. Although Oxaliplatin is an effective chemotherapeutic agent for the treatment of colorectal cancer (CRC), it still suffers from serious toxicities as well as drug resistance. In this work, three Oxaliplatin tetravalent platinum prodrugs(O1-O3) and three novel mixed ammine/amine analogs(C1-C3) were constructed, introducing cannabidiol with anti-tumor activity in their axial position. All Pt(IV) prodrugs exhibited potent antitumor effects in a variety of tumor cell lines, especially in HCT-116 cells, where complex O3 showed strong inhibitory effects with the half maximal inhibitory concentrations (IC50) value of 6.02 ± 0.69 µM and about 2.6 times higher than that of Oxaliplatin. Further studies revealed that complex O3 decreased cellular mitochondrial membrane potential in a concentration-dependent manner and enhanced reactive oxygen species (ROS) accumulation by decreasing the expression of catalase, superoxide dismutase 2 (SOD2) and superoxide dismutase 3 (SOD3). Complex O3 induces mitochondrial dysfunction and upregulates the pro-apoptotic protein Noxa, ultimately leading to severe DNA damage. The upregulation of Phosphorylated histone protein H2AX (γ-H2AX) expression is clear evidence. In addition, O3 inhibits the expression of RAD51 protein and prevents DNA damage repair, thus overcoming drug resistance. This strategy of combining bioactive molecules cannabidiol with platinum drugs to improve therapeutic efficacy and overcome drug resistance has been proven to be very effective and deserves further investigation.


Assuntos
Antineoplásicos , Canabidiol , Doenças Mitocondriais , Pró-Fármacos , Humanos , Oxaliplatina/farmacologia , Antineoplásicos/farmacologia , Platina/farmacologia , Canabidiol/farmacologia , Linhagem Celular Tumoral , Pró-Fármacos/farmacologia , Apoptose , Cisplatino/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38508408

RESUMO

Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.


Assuntos
Canabidiol , Neuralgia , Neuralgia do Trigêmeo , Animais , Masculino , Ratos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Dor Facial/metabolismo , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Ratos Wistar , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/tratamento farmacológico
19.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554815

RESUMO

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Assuntos
Compostos Bicíclicos com Pontes , Canabidiol/análogos & derivados , Canabinoides , Capsaicina/análogos & derivados , Discinesia Induzida por Medicamentos , Levodopa , Ratos , Camundongos , Animais , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Camundongos Endogâmicos C57BL , Corpo Estriado , Oxidopamina/farmacologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
20.
Support Care Cancer ; 32(4): 210, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443674

RESUMO

PURPOSE: Cannabis use may introduce risks and/or benefits among people living with cancer, depending on product type, composition, and nature of its use. Patient knowledge of tetrahydrocannabinol (THC) or cannabidiol (CBD) concentration could provide information for providers about cannabis use during and after treatment that may aide in risk and benefit assessments. This study aimed to examine knowledge of THC or CBD concentration among patients living with cancer who consume cannabis, and factors associated with knowledge of cannabinoid concentrations. METHODS: People living with cancer who consumed cannabis since their diagnosis (n = 343) completed an anonymous, mixed-mode survey. Questions assessed usual mode of delivery (MOD), knowledge of THC/CBD concentration, and how source of acquisition, current cannabis use, and source of instruction are associated with knowledge of THC/CBD concentration. Chi-square and separate binary logistic regression analyses were examined and weighted to reflect the Roswell Park patient population. RESULTS: Less than 20% of people living with cancer had knowledge of THC and CBD concentration for the cannabis products they consumed across all MOD (smoking- combustible products, vaping- vaporized products (e-cigarettes), edibles-eating or drinking it, and oral- taking by mouth (pills)). Source of acquisition (smoking-AOR:4.6, p < 0.01, vaping-AOR:5.8, p < 0.00, edibles-AOR:2.6, p < 0.04), current cannabis use (edibles-AOR:5.4, p < 0.01, vaping-AOR: 11.2, p < 0.00, and oral-AOR:9.3, p < 0.00), and source of instruction (vaping only AOR:4.2, p < 0.05) were found to be variables associated with higher knowledge of THC concentration. CONCLUSION: Self-reported knowledge of THC and CBD concentration statistically differed according to MOD, source of acquisition, source of instruction, and current cannabis use.


Assuntos
Canabidiol , Cannabis , Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias , Humanos , Dronabinol , Autorrelato , Neoplasias/tratamento farmacológico , Sobreviventes , Analgésicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...